import cadquery as cq from cq_gears import SpurGear import math from shapely.geometry import LineString from shapely.geometry import Point # M3 screws for attaching lid m3_tap= 2.5 m3_head_diameter= 6 m3_head_depth= 3 m3_passthrough= 3.5 # Fastener dimensions fastener_width= 11.5 fastener_height= 3.5 fastener_length= 20 fastener_h_spacing= .2 fastener_gap= .2 hex_diameter= 10 hex_depth= 4 m5_passthrough= 5.5 # NEMA 17 stepper motor stepper_motor_size= 42.0 stepper_hole_width= 31.0 stepper_mount_dia= 22.5 # Case part_thinkness= 20 outer_fillets= 2.5 slant_degree= 15.0 wall_width= 1.6 loop_width= wall_width loop_angle= 36 rod_diameter= 15.2 offset= 9 tab_height= 6 tab_width= 25 lid_stepper_hole= 5.5 # Gears mod= 0.8 gear_gap= 0.2 gear_offset= 0.2 large_gear_diameter= 8.5 gear_thinkness= 10 sg_teeth= 11 # Other mount_gap= 2 support_radius= 11/2 end_y= -4.3 step_dep= 0.4 hack_num= 0.000001 # Calculated values fastener_hole_depth = tab_height-2 lid_thicknesss = (part_thinkness-gear_thinkness)/2 gap = stepper_motor_size * math.sin(math.radians(slant_degree)) / math.sin(math.radians(90-slant_degree)) width = math.sqrt(gap**2 + stepper_motor_size**2 - 2*gap*stepper_motor_size*math.cos(math.radians(90))) end_x = gap+stepper_motor_size-5 outer_ring_diameter = rod_diameter+2*loop_width center_x = end_x-math.cos(math.radians(loop_angle))*outer_ring_diameter/2 center_y = end_y-math.sin(math.radians(loop_angle))*outer_ring_diameter/2 # Stepper motor mount points stepper_hole_radius = stepper_hole_width/2*math.sqrt(2) stepper_center = cq.Workplane('XY').lineTo(0, offset)\ .polarLine(stepper_motor_size/2, 90-slant_degree)\ .polarLine(stepper_motor_size/2, -slant_degree)\ .val().endPoint().toTuple() e = cq.Workplane('XY').lineTo(0,offset).polarLine(stepper_motor_size, 90-slant_degree).hLine(width) end = e.val().endPoint().toTuple() e = e.polarLine(support_radius,180-slant_degree).val().endPoint().toTuple() slope = math.tan(math.radians(90-slant_degree)) b = e[1] - slope*e[0] support_y = end[1]-support_radius support_x = (support_y-b)/slope lg_x = support_x-stepper_center[0] lg_y = support_y-stepper_center[1] sg_radius = sg_teeth*mod/2 lg_radius = (math.sqrt(lg_x**2 + lg_y**2)-sg_radius) def findRodInter(n_x, n_y): p = Point(center_x, center_y) c = p.buffer(rod_diameter/2).boundary l = LineString([(n_x, n_y), (n_x+100*math.cos(math.radians(-slant_degree)), n_y+100*math.sin(math.radians(-slant_degree)))]) i = c.intersection(l) if len(i.geoms) > 1 and i.geoms[0].coords[0][0] > i.geoms[1].coords[0][0]: x = i.geoms[1].coords[0][0] y = i.geoms[1].coords[0][1] else: x = i.geoms[0].coords[0][0] y = i.geoms[0].coords[0][1] return x, y def createOutline(ex_amount): base = cq.Workplane('XY').lineTo(0,offset).polarLine(stepper_motor_size, 90-slant_degree) base = base.hLine(width).polarLine(stepper_motor_size-5,270-slant_degree).tangentArcPoint((end_x, end_y), relative=False) outer_x=center_x+math.cos(math.radians(270-slant_degree))*outer_ring_diameter/2 outer_y=center_y+math.sin(math.radians(270-slant_degree))*outer_ring_diameter/2 base = base.threePointArc((center_x+outer_ring_diameter/2 ,center_y), (outer_x, outer_y))\ .polarLine(tab_width, 180-slant_degree).vLine(tab_height) n_x=base.val().endPoint().toTuple()[0] n_y=base.val().endPoint().toTuple()[1] coor_x, coor_y = findRodInter(n_x, n_y) last_x, last_y = findRodInter(n_x, n_y+mount_gap) base = base.lineTo(coor_x, coor_y) base = base.threePointArc((center_x+rod_diameter/2, center_y), (last_x, last_y)) base = base.polarLine(tab_width, 180-slant_degree).close().extrude(ex_amount) # Fillets base = base.edges('|Z and >Y').fillet(outer_fillets) base = base.edges('|Z and Z").workplane() .placeSketch(s_p1) .extrude(step_dep).faces(">Z").workplane() .placeSketch(s_p2) .extrude(thd_dep) ) return f_fancyh.rotate((1,0,0),(0,0,0),180) lid = createOutline(-lid_thicknesss).translate((0,0,part_thinkness)) base = createOutline(part_thinkness) # Shell copy = base.faces('>>Z[0]').workplane().center(0, -offset-loop_width)\ .polarLine(stepper_motor_size, slant_degree)\ .polarLine(-2*stepper_motor_size, 90+slant_degree)\ .hLine(-2*stepper_motor_size).close().cutThruAll() copy = copy.faces('+Z').workplane().center(0, -offset-loop_width)\ .polarLine(2*stepper_motor_size,-slant_degree)\ .vLine(stepper_motor_size)\ .hLine(-2*stepper_motor_size)\ .close().cutBlind(-lid_thicknesss) base = base.faces('+Z').shell(-wall_width) base = base.add(copy) base = base.faces('<>Z[0]').workplane().center(stepper_center[0], -stepper_center[1])\ .circle(stepper_mount_dia/2)\ .pushPoints([(stepper_hole_radius*math.cos(math.radians(45+slant_degree)),\ stepper_hole_radius*math.sin(math.radians(45+slant_degree))),\ (stepper_hole_radius*math.cos(math.radians(135+slant_degree)),\ stepper_hole_radius*math.sin(math.radians(135+slant_degree))),\ (stepper_hole_radius*math.cos(math.radians(225+slant_degree)),\ stepper_hole_radius*math.sin(math.radians(225+slant_degree))),\ (stepper_hole_radius*math.cos(math.radians(315+slant_degree)),\ stepper_hole_radius*math.sin(math.radians(315+slant_degree)))])\ .circle(3/2).cutBlind(-wall_width) lid = lid.cut(base) copy = lid.faces('>>Z[0]').workplane().vLine(-offset-wall_width, forConstruction=True).polarLine(stepper_motor_size*2, slant_degree)\ .polarLine(-2*stepper_motor_size, 90+slant_degree)\ .hLine(-3*stepper_motor_size).close().cutThruAll() lid = lid.faces('>Z[0]').shell(-wall_width+hack_num, kind='arc') lid = lid.add(copy) lid = lid.faces('>Z[1]').workplane().center(stepper_center[0], -stepper_center[1])\ .circle(sg_radius+mod).extrude(lid_thicknesss-wall_width) lid = lid.faces('>Z[0]').workplane().circle(lid_stepper_hole/2).cutThruAll() base = base.faces('Z[0]').workplane().center(lg_x+hack_num,-lg_y)\ .circle(support_radius).extrude(-lid_thicknesss+wall_width) lid = lid.faces('>Z[0]').workplane().center(-hack_num, 0).vLine(-support_radius+wall_width/2)\ .hLine(support_radius)\ .polarLine(-support_radius, 270+slant_degree)\ .close().extrude(-lid_thicknesss+wall_width) # Lid Holes lid = lid.faces('>Z[0]').workplane().circle(large_gear_diameter/2-gear_offset).extrude(gear_thinkness/2) cut = boreHole(m3_head_diameter, m3_head_depth, step_dep, m3_passthrough, m3_passthrough*2).translate(lid.faces('